過去兩周,生成式人工智能 (AI) 領域是毫無疑問的熱點,突破性的新版本和尖端集成不斷涌現。 OpenAI 發布了備受期待的 GPT-4 模型,Midjourney 發布了最新的 V5 模型,Stanford 發布了 Alpaca 7B 語言模型。與此同時,谷歌在其整個 Workspace 套件中推出了生成式人工智能,Anthropic 推出了其人工智能助手 Claude,而微軟則將其強大的生成式人工智能工具 Copilot 集成到了 Microsoft 365 套件中。
隨著企業開始意識到人工智能和自動化的價值以及采用這些技術以保持市場競爭力的必要性,人工智能開發和采用的步伐愈發加快。
盡管人工智能發展看似進展順利,但仍有一些潛在的挑戰和瓶頸需要解決。隨著越來越多的企業和消費者接受人工智能,計算能力方面的瓶頸正在出現。人工智能系統所需的計算量每隔幾個月就會翻一番,而計算資源的供應卻難以跟上步伐。此外,訓練大規模人工智能模型的成本持續飆升,過去十年每年增長約 3100%。
開發和訓練尖端人工智能系統所需的成本上升和資源需求增加的趨勢正在導致集中化,只有擁有大量預算的實體才能進行研究和生產模型。然而,一些基于加密技術的項目正在構建去中心化解決方案,以使用開放計算和機器智能網絡解決這些問題。
人工智能(AI)和機器學習(ML)基礎
AI 領域可能令人望而生畏,深度學習、神經網絡和基礎模型等技術術語增加了其復雜性。現在,就讓我們簡化這些概念以便于理解。
人工智能是計算機科學的一個分支,涉及開發算法和模型,使計算機能夠執行需要人類智能的任務,例如感知、推理和決策制定;
機器學習 (ML) 是 AI 的一個子集,它涉及訓練算法以識別數據中的模式并根據這些模式進行預測;
Gala Games擬將存量和未售出的NFT游戲物品從以太坊遷移到GalaChain:金色財經報道,為了進一步減少以太坊鏈上 Gas 費支出,區塊鏈游戲平臺 Gala Games 擬將存量和未售出的 NFT 游戲物品從以太坊遷移到 GalaChain,以為用戶提供更加無縫的 Web3 游戲體驗。作為本次遷移活動的一部分,Gala Games 還將會為玩家提供一批 NFT 盲盒,每個盒子將放置Gala Games 生態系統中三個隨機游戲物品,且無需成本即可在 GalaChain 上鑄造、發布和分配。[2023/8/8 21:31:21]
深度學習是一種涉及使用神經網絡的 ML,神經網絡由多層相互連接的節點組成,這些節點協同工作以分析輸入數據并生成輸出。
基礎模型,例如 ChatGPT 和 Dall-E,是經過大量數據預訓練的大規模深度學習模型。這些模型能夠學習數據中的模式和關系,使它們能夠生成與原始輸入數據相似的新內容。 ChatGPT 是一種用于生成自然語言文本的語言模型,而 Dall-E 是一種用于生成新穎圖像的圖像模型。
AI和ML行業的問題
人工智能的進步主要由三個因素驅動:
算法創新:研究人員不斷開發新的算法和技術,讓人工智能模型能夠更高效、更準確地處理和分析數據。
數據:人工智能模型依賴大型數據集作為訓練的燃料,使它們能夠從數據中的模式和關系中學習。
計算:訓練 AI 模型所需的復雜計算需要大量的計算處理能力。
然而,有兩個主要問題阻礙了人工智能的發展。回到2021年,獲取數據是人工智能企業在人工智能發展過程中面臨的首要挑戰。去年,與計算相關的問題超越了數據成為挑戰,特別是由于高需求驅動下無法按需訪問計算資源。
Lookonchain:MASK團隊過去一周共向幣安等交易所轉出250萬MASK:11月3日消息,據Lookonchain調查,MASK此前以5個價格從投資者處籌集資金,其中天使輪0.08美元、種子輪0.13美元、A輪0.2美元、B輪0.3美元、C輪0.5美元。過去的7天,MASK團隊的一個地址總共向幣安和OKX等交易所地址轉出了250萬MASK(約1300萬美元)。此外,MASK前50名持有者總共持有9375萬MASK,占總供應量的93.75%;其中Binance持有1797萬MASK,占總供應量的17.97%,占流通供應量的61.7%。[2022/11/3 12:13:38]
第二個問題與算法創新效率低下有關。雖然研究人員通過在以前的模型的基礎上繼續對模型進行增量改進,但這些模型提取的智能或模式總是會丟失。
讓我們更深入地研究這些問題。
計算瓶頸
訓練基礎機器學習模型需要大量資源,通常需要長時間使用大量 GPU。例如,Stability.AI 需要在 AWS 的云中運行 4,000 個 Nvidia A100 GPU 來訓練他們的 AI 模型,一個月花費超過 5000 萬美元。另一方面,OpenAI 的 GPT-3 使用 1,000 個 Nvidia V100 GPU 進行訓練,耗資 1,200 萬美元。
人工智能公司通常面臨兩種選擇:投資自己的硬件并犧牲可擴展性,或者選擇云提供商并支付高價。雖然大公司有能力選擇后者,但小公司可能沒有那么奢侈。隨著資本成本的上升,初創公司被迫削減云支出,即使大型云提供商擴展基礎設施的成本基本保持不變。
人工智能的高昂計算成本給追求該領域進步的研究人員和組織造成了重大障礙。目前,迫切需要一種經濟實惠的按需無服務器計算平臺來進行 ML 工作,這在傳統計算領域是不存在的。幸運的是,一些加密項目正在致力于開發可以滿足這一需求的去中心化機器學習計算網絡。
Channels的存借總額已經突破5億美金:據Channels官方數據顯示,平臺最新存借總額已高達5.4億美金,還在快速穩步增長。平臺已上新六個新幣,分別為HDOT,MDX,HFIL,HBCH,HLTC,BETH。經過和社區的充分溝通,DAO提案投票已經上線,目前得到用戶的一致好評。官方披露,今日還將公布分紅方案并開啟投票,計劃2月28日開始分紅[2021/2/27 17:58:38]
效率低下和缺乏協作
越來越多的人工智能開發是在大型科技公司秘密進行的,而不是在學術界。這種趨勢導致該領域內的合作減少,例如微軟的 OpenAI 和谷歌的 DeepMind 等公司相互競爭并保持其模型的私密性。
缺乏協作導致效率低下。例如,如果一個獨立的研究團隊想要開發一個更強大的 OpenAI 的 GPT-4 版本,他們將需要從頭開始重新訓練模型,基本上是重新學習 GPT-4 訓練的所有內容。考慮到僅 GPT-3 的培訓成本就高達 1200 萬美元,這讓規模較小的 ML 研究實驗室處于劣勢,并將人工智能發展的未來進一步推向大型科技公司的控制。
但是,如果研究人員可以在現有模型的基礎上構建而不是從頭開始,從而降低進入壁壘;如果有一個激勵合作的開放網絡,作為一個自由市場管理的模型協調層,研究人員可以在其中使用其他模型訓練他們的模型,會怎么樣呢?去中心化機器智能項目 Bittensor 就構建了這種類型的網絡。
機器學習的分散式計算網絡
去中心化計算網絡通過激勵 CPU 和 GPU 資源對網絡的貢獻,將尋求計算資源的實體連接到具有閑置計算能力的系統。由于個人或組織提供其閑置資源沒有額外成本,因此與中心化提供商相比,去中心化網絡可以提供更低的價格。
存在兩種主要類型的分散式計算網絡:通用型和專用型。通用計算網絡像分散式云一樣運行,為各種應用程序提供計算資源。另一方面,特定用途的計算網絡是針對特定用例量身定制的。例如,渲染網絡是一個專注于渲染工作負載的專用計算網絡。
ChainUP與幣世界達成技術合作 將提供全方位WaaS服務:據官方消息,近日ChainUP宣布與幣世界達成技術合作,將為幣世界提供全方位的ChainUP WaaS聯盟服務,包含主鏈開發接入、主鏈技術維護、主鏈資產托管等。
幣世界為全球數字貨幣投資用戶提供一站式資訊、實時行情、社區等綜合投資服務,已成為中國、韓國用戶量最大的產品。同時幣世界與全球上百家項目方、交易所、錢包等區塊鏈生態伙伴達成了戰略合作,提供從孵化、募資、上市交易、品牌傳播、行情展示及推薦、社群運營等綜合全案服務。
ChainUP WaaS聯盟是ChainUP依托累計3年時間所服務的300多家交易所經驗,將底層資產托管和錢包封裝而成的一套完整的服務。包含資產托管、節點服務等多種功能,通過開放錢包API、SDK等接口,幫助交易所、項目方、媒體等快速接入,實現云端托管資產。[2020/7/14]
盡管大多數 ML 計算工作負載可以在分散的云上運行,但有些更適合特定用途的計算網絡,如下所述。
機器學習計算工作負載
機器學習可以分為四種主要的計算工作負載:
數據預處理:準備原始數據并將其轉換為 ML 模型可用的格式,這通常涉及數據清理和規范化等活動。
訓練:機器學習模型在大型數據集上進行訓練,以學習數據中的模式和關系。在訓練期間,調整模型的參數和權重以最小化誤差。
微調:可以使用較小的數據集進一步優化 ML 模型,以提高特定任務的性能。
推理:運行經過訓練和微調的模型以響應用戶查詢進行預測。
數據預處理、微調和推理工作負載非常適合在 Akash、Cudos 或 iExec 等去中心化云平臺上運行。然而,去中心化存儲網絡 Filecoin 由于其最近的升級而特別適合數據預處理,從而啟用了 Filecoin 虛擬機(FVM)。 FVM 升級可以對存儲在網絡上的數據進行計算,為已經使用它進行數據存儲的實體提供更高效的解決方案。
動態 | 美國政府已在Chainalysis花費至少1000萬美元:金色財經報道,根據CoinDesk審查的82份聯邦采購合同記錄,自2015年Chainalysis成立以來,美國聯邦機構已在Chainalysis的工具、服務和培訓上花費了至少1000萬美元。算上可能延長的合同,將超過1400萬美元。美國政府每年都在Chainalysis上增加支出,在2019年向該公司支付了超過500萬美元,比2018年增加了20%,比2015年增加了22558%。在2015年,FBI和國稅局是Chainalysis的唯一聯邦客戶。如今,Chainalysis的資金來自多個聯邦機構,包括FBI、執法局(DEA)、移民與海關執法局(ICE)、證券交易委員會(SEC)、商品期貨交易委員會(CFTC)、金融犯罪執法網絡(FinCEN)、國稅局、特勤局(USSS)、運輸安全管理局(TSA),甚至還來自空軍部。[2020/2/11]
機器學習專用計算網絡
由于圍繞并行化和驗證的兩個挑戰,訓練部分需要一個特定用途的計算網絡。
ML 模型的訓練依賴于狀態,這意味著計算的結果取決于計算的當前狀態,這使得利用分布式 GPU 網絡變得更加復雜。因此,需要一個專為 ML 模型并行訓練而設計的特定網絡。
更重要的問題與驗證有關。要構建信任最小化的 ML 模型訓練網絡,網絡必須有一種方法來驗證計算工作,而無需重復整個計算,否則會浪費時間和資源。
Gensyn
Gensyn 是一種特定于 ML 的計算網絡,它已經找到了以分散和分布式方式訓練模型的并行化和驗證問題的解決方案。該協議使用并行化將較大的計算工作負載拆分為任務,并將它們異步推送到網絡。為了解決驗證問題,Gensyn 使用概率學習證明、基于圖形的精確定位協議以及基于抵押和削減的激勵系統。
盡管 Gensyn 網絡尚未上線,但該團隊預測其網絡上 V100 等效 GPU 的每小時成本約為 0.40 美元。這一估計是基于以太坊礦工在 Merge 之前使用類似 GPU 每小時賺取 0.20 至 0.35 美元。即使這個估計有 100% 的偏差,Gensyn 的計算成本仍將大大低于 AWS 和 GCP 提供的按需服務。
Together
Together 是另一個專注于構建專門用于機器學習的去中心化計算網絡的早期項目。在項目啟動之初,Together 開始整合來自斯坦福大學、蘇黎世聯邦理工學院、Open Science Grid、威斯康星大學麥迪遜分校和 CrusoeCloud 等不同機構未使用的學術計算資源,從而產生總計超過 200 PetaFLOP 的計算能力。他們的最終目標是通過匯集全球計算資源,創造一個任何人都可以為先進人工智能做出貢獻并從中受益的世界。
Bittensor:去中心化機器智能
Bittensor 解決了機器學習中的低效率問題,同時通過使用標準化的輸入和輸出編碼來激勵開源網絡上的知識生產,從而改變研究人員的協作方式,以實現模型互操作性。
在 Bittensor 上,礦工因通過獨特的 ML 模型為網絡提供智能服務而獲得網絡的本地資產 TAO 的獎勵。在網絡上訓練他們的模型時,礦工與其他礦工交換信息,加速他們的學習。通過抵押 TAO,用戶可以使用整個 Bittensor 網絡的智能并根據他們的需要調整其活動,從而形成 P2P 智能市場。此外,應用程序可以通過網絡的驗證器構建在網絡的智能層之上。
Bittensor 是如何工作的
Bittensor 是一種開源 P2P 協議,它實現了分散的專家混合 (MoE),這是一種 ML 技術,結合了專門針對不同問題的多個模型,以創建更準確的整體模型。這是通過訓練稱為門控層的路由模型來完成的,該模型在一組專家模型上進行訓練,以學習如何智能地路由輸入以產生最佳輸出。為實現這一目標,驗證器動態地在相互補充的模型之間形成聯盟。稀疏計算用于解決延遲瓶頸。
Bittensor 的激勵機制吸引了專門的模型加入混合體,并在解決利益相關者定義的更大問題中發揮利基作用。每個礦工代表一個獨特的模型(神經網絡),Bittensor 作為模型的自我協調模型運行,由未經許可的智能市場系統管理。
該協議與算法無關,驗證者只定義鎖并允許市場找到密鑰。礦工的智能是唯一共享和衡量的組成部分,而模型本身仍然是私有的,從而消除了衡量中的任何潛在偏見。
驗證者
在 Bittensor 上,驗證器充當網絡 MoE 模型的門控層,充當可訓練的 API 并支持在網絡之上開發應用程序。他們的質押支配著激勵格局,并決定了礦工要解決的問題。驗證者了解礦工提供的價值,以便相應地獎勵他們并就他們的排名達成共識。排名較高的礦工獲得更高份額的通貨膨脹區塊獎勵。
驗證者也被激勵去誠實有效地發現和評估模型,因為他們獲得了他們排名靠前的礦工的債券,并獲得了他們未來獎勵的一部分。這有效地創造了一種機制,礦工在經濟上將自己“綁定”到他們的礦工排名。該協議的共識機制旨在抵制高達 50% 的網絡股份的串通,這使得不誠實地對自己的礦工進行高度排名在財務上是不可行的。
礦工
網絡上的礦工接受訓練和推理,他們根據自己的專業知識有選擇地與同行交換信息,并相應地更新模型的權重。在交換信息時,礦工根據他們的股份優先處理驗證者請求。目前有3523名礦工在線。
礦工之間在 Bittensor 網絡上的信息交換允許創建更強大的 AI 模型,因為礦工可以利用同行的專業知識來改進他們自己的模型。這實質上為 AI 空間帶來了可組合性,不同的 ML 模型可以在其中連接以創建更復雜的 AI 系統。
復合智能
Bittensor 通過新市場解決激勵低效問題,從而有效地實現機器智能的復合,從而提高 ML 培訓的效率。該網絡使個人能夠為基礎模型做出貢獻并將他們的工作貨幣化,無論他們貢獻的規模或利基如何。這類似于互聯網如何使利基貢獻在經濟上可行,并在 YouTube 等內容平臺上賦予個人權力。本質上,Bittensor 致力于將機器智能商品化,成為人工智能的互聯網。
總結
隨著去中心化機器學習生態系統的成熟,各種計算和智能網絡之間很可能會產生協同效應。例如 Gensyn 和 Together 可以作為 AI 生態的硬件協調層,而 Bittensor 可以作為智能協調層。
在供應方面,以前開采 ETH 的大型公共加密礦工對為去中心化計算網絡貢獻資源表現出極大的興趣。例如,在他們的網絡 GPU 發布之前,Akash 已經從大型礦工那里獲得了 100 萬個 GPU 的承諾。此外,較大的私人比特幣礦工之一的 Foundry 已經在 Bittensor 上進行挖礦。
本報告中討論的項目背后的團隊不僅僅是為了炒作而構建基于加密技術的網絡,而是 AI 研究人員和工程師團隊,他們已經意識到加密在解決其行業問題方面的潛力。
通過提高訓練效率、實現資源池化并為更多人提供為大規模 AI 模型做出貢獻的機會,去中心化 ML 網絡可以加速 AI 發展,讓我們在未來更快解鎖通用人工智能。
原文作者:Messari - Sami Kassab
原創編譯:BlockTurbo
區塊引擎
個人專欄
閱讀更多
金色財經 善歐巴
金色早8點
白話區塊鏈
歐科云鏈
Odaily星球日報
Arcane Labs
MarsBit
深潮TechFlow
BTCStudy
鏈得得
Tags:人工智能ENSCHAHAI人工智能從事什么工作Sint-Truidense Voetbalvereniging Fan TokenbankquickchainWeFilmChain
本文來自公號:美國宗人府金融界的衍生工具有很多種,真正能掀起金融海嘯的,一般不是普通看漲看跌期權,而是各種“互換”.
1900/1/1 0:00:00GPT-4發布一天之后,壓力全部給到百度這邊。 就在剛剛,百度交卷。 文心一言,百度全新一代知識增強大語言模型,正式在百度總部會議室里發布.
1900/1/1 0:00:00前天新聞發布時,我正在下班的路上。雖然與 Bitget 的交割已有一段時間,但正式向媒體公開的 2023 年 3 月 22 日,便成了我正式離開 BitKeep 的日子.
1900/1/1 0:00:00在加密銀行Silvergate Bank清算、美國監管機構起訴 KuCoin 等多方利空消息影響下,加密市場情緒惡化.
1900/1/1 0:00:00這兩天,一篇關于“GPT-4救了我狗的命”的帖子屬實有點火:短短一兩天就有數千人轉發,上萬人點贊,網友在評論區討論得熱火朝天.
1900/1/1 0:00:00撰文:Devin Goodkin,GammaSwap Co-Founder編譯:Peng SUN,Foresight News 首先.
1900/1/1 0:00:00