派客國際投資有限公司??蘇文杰
摘要:本文對BitMEX交易所的XBTUSD永續合約的賣4000至買4000的市場深度數據進行統計分析,通過核密度估計得出了大額掛單在不同價格位置出現的概率密度。
大額掛單分為買單和賣單,前者可視為支撐位,后者可視為阻力位,它們對行情走向具有一定的影響。大額掛單的價格可能在限價指令薄的固定位置,也可能在一定的價格范圍內移動,可假設其在較大概率上會出現在某些特定的價格位置,從而反映出各個掛單者對行情的判斷。
本文對BitMEX交易所的XBTUSD永續合約的賣4000至買4000的市場深度數據進行統計分析,通過核密度估計得出了大額掛單在不同價格位置出現的概率密度。
從獲取市場深度數據的時效性來講,由于獲取具有一定的延遲,所有的數據其實都是過去的數據,不一定能代表當前的大額掛單的價格位置,但根據它們在不同價格位置出現的概率密度,我們可以對下一時刻它們可能出現的價格位置做出推斷,從而進行相應的策略決策。
報告:比特幣礦企Hut 8第一季度的收入為5330萬加元:金色財經報道,比特幣礦工 Hut 8 報告稱,2022 年第一季度的收入為 5330 萬加元,凈收入為 55,708 加元。公司在周四的一份聲明中表示,部署 9,592 臺新的 MicroBT 礦機幫助他們在今年前三個月取得了“強勁的成果”。盡管如此,根據該聲明,它們“部分被比特幣平均價格的下降所抵消”。新礦機將公司的哈希率提高到每秒 2.54 exahash (EH/s),比 2021 年底增長 27%。在本季度末,它總共持有 6,460 BTC。(theblockcrypto)[2022/5/13 3:12:01]
不同的編程語言一般都有特定的不同的函數來專門運行核密度估計的計算,比較方便,但在實際情況中,為了使程序能夠準確反映我們的意圖,有必要去深入理解核密度估計的概念。
一、核密度估計-
概率密度函數估計的簡要介紹
概率密度函數,常簡稱為密度函數以至密度,是概率論的最重要概念之一。雖然在統計學上我們常提“總體分布”這個名詞,但使用密度的概念去規定或刻畫一個統計模型不僅常見,而且比使用分布概念更合適和方便。在各種實際問題中,變量取值的分布呈現“兩頭小、中間大,左右對稱”這種“正態類似型”者為數頗多。這些特點在密度函數的圖像上一目了然,而在分布函數的圖像上則有不同。
聲音 | 比特幣安全專家:一旦再次發生金融危機,加密市場將率先崩潰:比特幣安全專家Andreas Antonopoulos近期接受采訪時表示,如果現在再次發升經濟泡沫破裂的情況,將比2008年金融危機更加嚴重。2008年主要是涉及房地產領域,而現如今將遠不止一個泡沫那樣簡單。Antonopoulos解釋道:“它將以多種方式擴散到每一種金融資產,同樣也會擴散到加密領域……你投資的房地產、債券、股票……所有這些都是過度膨脹的。”接著Antonopoulos補充說,不應該為了檢驗救生艇有多好而希望出現危機。他指出,人們沒有意識到的一個因素是,當出現金融危機時,加密貨幣市場在一開始就會出現大規模崩潰:“它將嚴重崩潰的原因是,許多基于廉價資金的風險投資公司投資和個人私人投資將會枯竭。當人們害怕的時候,當出現那樣的經濟衰退的時候,他們就會撤回投資,同樣也會撤回加密投資。”此外,Antonopoulos堅稱,大規模衰退的第一個影響將是加密崩潰,因為市場的流動性將會枯竭。他補充稱,這是一個“典型的影響,也是衰退的一個癥狀”。崩盤后,他表示有多種可能性,其中之一是比特幣成為一種安全的避險資產。(AMBCrypto)[2020/1/5]
密度估計問題,就是要通過從總體中抽得的樣本去估計其概率密度函數f。在實際操作中,總可以把問題說成:固定一已知的x軸,要估計f在x點之值f(x)。
聲音 | 原中行副行長王永利:比特幣不可能成為真正的貨幣:據新浪財經報道,近日,在中國金融新青年孵化大會暨價值立方品牌發布會上,原中國銀行副行長、中國文化金融50人論壇理事長王永利在會上表示,比特幣模仿黃金完全虛擬的“加密貨幣”不可能成為真正的貨幣,央行主導的數字貨幣只能是法定貨幣的數字化、智能化。金融是現代經濟資源配置的樞紐,貨幣是金融的基礎和靈魂,清算是貨幣金融的經絡和血脈。貨幣金融是虛擬經濟,要堅持服務實體經濟的宗旨。[2018/9/9]
如果概率密度函數形狀被假定或已知,那么就用參數估計法。如果概率密度函數的形狀未知,則用非參數估計法。實際上一般不要求密度函數有某種特定的數學形式,如密度為正態分布之類,也就是說未知密度函數的所屬類型并不知道。理由很明顯:若密度函數的數學形式已知,而只含少量未知參數,則不如徑直考慮這些參數的估計問題,而不提密度估計問題。因此,密度估計問題在本質上說是非參數性的。如今最流行的非參數密度估計法是核密度估計法,也稱為Parzen密度估計法。
比特幣期貨連漲四天奔向9000美元,延續上周漲超3%的表現:CME比特幣期貨BTC 6月合約收漲330美元,漲幅大約3.87%,連續第四個交易日上漲,報8860美元,上周漲約5.2%;數據顯示,4月6日以6630美元創主力合約收盤紀錄最低位。CBOE比特幣期貨XBT 6月合約收漲350美元,漲超4.10%,報8880美元,上周漲約3.3%;4月6日也以6605美元錄得主力合約收盤紀錄低點。[2018/4/24]
核密度估計作為一種非參數統計方法,在近四十余年吸引了不少學術界的注意,通過研究發現核密度估計的方法并非建立在某種艱深的概念或數學工具的基礎上,而不過是古老的直方圖方法的自然發展,這在統計發展史上有一定的代表性。應當指出的是,密度估計的重要性并不在于它的單獨使用,而是作為統計推斷的中間環節發揮作用。著名統計學專家Silverman曾指出,概率密度函數估計在數據統計處理的所有階段都是有用的。
圖1
在關于直方圖的理論討論中,我們常假定區間分隔是在考察樣本之前就定下來的,因此無隨機性,這就使理論簡化了。但在實際操作時不一定能恪守這個規定。例如,一批樣本可能較集中在O點附近,而在較遠的地方的個數較少。這時,有條件把密度f在O點附近之值估計得細一些,而在遠處則只能滿足于較粗的估計。也就是說,我們可能取一些不等長的區間,區間長度在O附近很短而在遠離O點處則較長。然后在每一區間內按式作出f的估計。這時,區間的位置、長短都是在參考了樣本以后決定的,故有隨機性。這樣的直方圖估計稱為“Data-based”的直方圖估計,其理論較a和h都比通常的直方圖估計復雜得多,這里就不再討論了。
英國經濟學家提出比特幣均衡價格模型:近日,倫敦帝國理工學院金融學教授Emiliano Pagnotta和Andrea Buraschi提出了基于工作證明的網絡理論結構,并已開發出一個在分散化金融網絡中為比特幣和其他資產定價的模型。作者指出,分散化的金融網絡獨特之處在于代幣“同時發揮兩種功能”。 除了作為資產發揮作用外,他們還鼓勵礦工維護網絡。 報告中的均衡價格是解決“消費者與礦工之間的相互作用的定點問題”的解決方案。[2018/4/17]
直方圖估計的優點在于簡單易行,且在n較大而容許h較小的情況下,所得圖像尚能顯示密度的基本特征,但也有明顯的缺點——它不是連續函數,且從統計角度看效率較低。例如,在這一方法下,每一區間中心部分密度估計較準,而邊緣部分則較差。綜合種種因素,我們仍可以說:直方圖估計不失為一個有用而基本的密度估計方法。
3、Parzen的核估計
不難看出:Rosenblatt估計仍為一個階梯函數,只不過與直方圖估計比起來,各階梯之長不一定相同而已,仍非連續曲線。另外,從Rosenblatt估計的定義中看出,為估計f在x點之值f(x),對與x在一定距離內的樣本,起的作用一樣,而在此以外則毫不起作用。直觀上可以設想:為估計f(x),與x靠近的樣本,所起的作用似應比遠離x的樣本要大些。這些在Parzen于1962年提出的核估計方法中都得到了體現。
為介紹Parzen的思想,我們先將式變換一個形式,引進一個函數
核函數的舉例
以一維情況為例,常用的核函數見下表:
表1
根據上表所示,畫出幾類核函數的圖像如下:
圖2
二、比特幣期貨合約大額掛單的價格位置
不斷獲取BitMEX交易所的XBTUSD永續合約的賣4000至買4000的市場深度數據,將UTC時間2019-08-0103:49:22時的數據繪圖如下所示:
圖3
將數據分為賣200至買200、賣800至買800、賣1600至買1600、賣3000至買3000、賣4000至買4000各段,分別求得各段的最大賣價和買價。只不斷地保存最近一段時間各段的最大賣價和買價,這可能就是潛在的支撐位和阻力位所在的價格位置。
根據保存的數據,利用核密度估計來計算出各段的支撐位和阻力位所在價格位置的概率密度,概率密度最大處附近即為支撐位或阻力位的所在位置。而各支撐位和阻力位所對應的限價單數量則分別來自于所保存的數據中對應的各限價單數量的中位數。
我們可以分別畫出各段的概率密度圖,為了方便觀察,我們將各圖繪制在一起,將阻力位用偏紅色的線條表示,將支撐位用偏綠色的線條表示,可得下圖:
圖4
上圖各峰值附近即為大額掛單所形成的支撐位和阻力位,進一步將相關數據列表如下:
表2
從上表可知,各概率密度的峰值雖然不大,但在其鄰域進行積分所得到的概率的值較大,因此各概率密度的峰值對應的價格位置附近就是各支撐位和阻力位的價格位置。
此外,各深度的支撐位和阻力位有部分重合。支撐位有兩個:價格9750附近,數量約為629.8萬張;價格9943附近,數量約為215.4萬張;阻力位有兩個:價格10080附近,數量約為135.6萬張;價格10200附近,數量約為385.5萬張。
我們可根據策略需求來選用這些支撐位和阻力位,例如,只將數量600萬張以上的視為有效支撐位和阻力位,那么在這段行情就只在價格9750附近存在一個有效支撐位。又如,只將數量1000萬張以上的視為有效支撐位和阻力位,那么在這段行情就暫時不存在有效支撐位和阻力位。
三、結論與討論
本文對BitMEX交易所的XBTUSD永續合約的賣4000至買4000的市場深度數據進行統計分析,通過核密度估計得出了大額掛單在不同價格位置出現的概率密度,從而確定了各支撐位和阻力位的位置。在實際操作中,我們可以根據具體策略選用它們,只將限價單數量達到一定量的價格位置視為有效的支撐位和阻力位。
需要注意的是,比特幣期貨的波動性很大,支撐位或者阻力位或許只適用于震蕩行情中的策略判斷,當出現瀑布行情時,巨大的交易量使得它們比較容易被突破。因此,我們往往將其與其他指標一起使用來降低風險。
參考文獻
陳希孺,柴根象.非參數統計教程.上海:華東師范大學出版社,1993.247-253
郭照莊.密度核估計中最優窗寬選擇的研究.燕山大學碩士學位論文,2006.1-9
張玉敏.基于不同核函數的概率密度函數估計比較研究.河北大學碩士學位論文,2010.8
茹楊.核函數的核密度估計算法.哈爾濱理工大學碩士學位論文,2016.3-5
謝中華.MATLAB統計分析與應用:40個案例分析.第二版.北京:北京航空航天大學出版社,2015.209
8月5日消息,泰國反洗錢辦公室代理秘書長PreechaCharoensahayanon表示,加密貨幣是反洗錢辦公室面臨的新挑戰,“這將是一個新的洗錢工具”.
1900/1/1 0:00:00?寫在前面? 幣圈除了比特幣,我們大體上可以把各種幣分為主流幣和山寨幣兩種。其中有一種項目,直接復制了其他項目的源碼生成的,這種我們稱之為山寨,因為其模仿屬性比較強.
1900/1/1 0:00:00親愛的用戶, 2019年7月31日中午12:00:00(UTC8)~8月3日中午12:00:00(UTC8).
1900/1/1 0:00:007月31日20:00,美國SMU物理博士、5miles創始人、蘭亭集勢原CTO、CyberMiles創始人盧亮博士做客“紛智共識機·百家訪談”第八期.
1900/1/1 0:00:00一邊是上下游的小微企業貸款難,一邊是“蘿卜章”事件不斷曝出,供應鏈金融事故頻發。面對讓行業頭疼的供應鏈金融怪圈,支付寶在成都用區塊鏈技術打造出破局的鑰匙.
1900/1/1 0:00:00EXOSIS(EXO)暫停使用錢包充提功能通知尊敬的BITKER用戶:因更新需要,EXOSIS(EXO)將暫停使用錢包充提功能,更新完成后充提功能將重新開啟,為此帶來的不便深表歉意.
1900/1/1 0:00:00